機器學習、深度學習與自然語言處理領域推的書籍列表

NO IMAGE
1 Star2 Stars3 Stars4 Stars5 Stars 給文章打分!
Loading...

機器學習、深度學習與自然語言處理領域推薦的書籍列表 是筆者 Awesome Reference 系列的一部分;對於其他的資料、文章、視訊教程、工具實踐請參考面向程式猿的資料科學與機器學習知識體系及資料合集。本文算是拋磚引玉,筆者最近有空就會在 Pad 上面隨手翻閱這些書籍,希望能夠了解其他優秀的書籍。

數學基礎

2010 – All of Statistics: A Concise Course in Statistical Inference【Book】: The goal of this book is to provide a broad background in probability and statistics for students in statistics, Computer science (especially data mining and machine learning), mathematics, and related disciplines.

2008-統計學完全教程:由美國當代著名統計學家L·沃塞曼所著的《統計學元全教程》是一本幾乎包含了統計學領域全部知識的優秀教材。本書除了介紹傳統數理統計學的全部內容以外,還包含了Bootstrap方法(自助法)、獨立性推斷、因果推斷、圖模型、非引數迴歸、正交函式光滑法、分類、統計學理論及資料探勘等統計學領域的新方法和技術。本書不但注重概率論與數理統計基本理論的闡述,同時還強調資料分析能力的培養。本書中含有大量的例項以幫助廣大讀者快速掌握使用R軟體進行統計資料分析。

機器學習

2007 – Pattern Recognition And Machine Learning【Book】: The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.

2012 – Machine Learning A Probabilistic Perspective 【Book】: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning.

2012 – 李航:統計方法學:李航老師的這本書偏優化和推倒,推倒相應演算法的時候可以參考這本書。

2014 – DataScience From Scratch【Book】: In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.

2015 – Python Data Science Handbook【Book】:Jupyter Notebooks for the Python Data Science Handbook

2015 – Data Mining, The Textbook【Book】: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.

2016 – 周志華 機器學習【Book】:周志華老師的這本書非常適合作為機器學習入門的書籍,書中的例子十分形象且簡單易懂。

University of Illinois at Urbana-Champaign:Text Mining and Analytics【Course】

臺大機器學習技法【Course】

斯坦福 機器學習課程【Course】

CS224d: Deep Learning for Natural Language Processing【Course】

Unsupervised Feature Learning and Deep Learning【Course】:來自斯坦福的無監督特徵學習與深度學習系列教程

深度學習

2015-The Deep Learning Textbook【Book】:中文譯本這裡,The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free.

Stanford Deep Learning Tutorial【Book】: This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning. By working through it, you will also get to implement several feature learning/deep learning algorithms, get to see them work for yourself, and learn how to apply/adapt these ideas to new problems.

Neural Networks and Deep Learning【Book】: Neural Networks and Deep Learning is a free online book. The book will teach you about: (1) Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data. (2) Deep learning, a powerful set of techniques for learning in neural networks

Practical Deep Learning For Coders 【Course】:七週的免費深度學習課程,學習如何構建那些優秀的模型。

Oxford Deep NLP 2017 course【Course】: This is an advanced course on natural language processing. Automatically processing natural language inputs and producing language outputs is a key component of Artificial General Intelligence.

自然語言處理

2016 – CS224d: Deep Learning for Natural Language Processing【Course】

2017 – Oxford Deep NLP 2017 course【Course】

[2015 – Text Data Management and Analysis【Book】](): A Practical Introduction to Information Retrieval and Text Mining

DL4NLP-Deep Learning for NLP resources【Resource】

泛資料科學

2012 – 深入淺出資料分析 中文版【Book】:深入淺出資料分析》以類似“章回小說”的活潑形式,生動地向讀者展現優秀的資料分析人員應知應會的技術:資料分析基本步驟、實驗方法、最優化方法、假設檢驗方法、貝葉斯統計方法、主觀概率法、啟發法、直方圖法、迴歸法、誤差處理、相關資料庫、資料整理技巧;正文之後,意猶未盡地以三篇附錄介紹資料分析十大要務、R工具及ToolPak工具,在充分展現目標知識以外,為讀者搭建了走向深入研究的橋樑。

Lean Analytics — by Croll & Yoskovitz: 本書是教會你如何建立基本的以商業思維去使用這些資料,雖然這本書本身定位是面向初學者,不過我覺得你可以從中學到更多。你可以從本書中學到一條基本準則、6個基礎的線上商業形態以及隱藏其後的資料策略。

Business value in the ocean of data — by Fajszi, Cser & Fehér: 如果說Lean Analytics是關於面向初學者講解商業邏輯加上資料,那麼本書是面向大型公司來講解這些內容。聽上去好像沒啥新鮮的,不過往往初創企業與獨角獸之間面對的問題是千差萬別,本書中會介紹譬如保險公司是如何進行定價預測或者銀行從業者們又在面臨怎樣的資料問題。

Naked Statistics — Charles Wheelan: 這本書我一直很是推薦,因為它不僅僅面向資料科學家,而是為任何一個行業的人提供基本的統計思維,這一點恰恰是我認為非常關鍵的。這本書並沒有太多的長篇大論,而是以一個又一個的故事形式來講解統計思維在公司運營中的重要作用。

Doing Data Science — Schutt and O’Neil: 這算是最後一本非技術向的書了吧,這本書相較於上面三本更上一層樓,他深入了譬如擬合模型、垃圾資訊過濾、推薦系統等等方面的知識。

Data Science at the Command Line — Janssens: 在介紹本書之前首先要強調下,千萬不要畏懼程式設計,學習些簡單的程式設計知識能夠有助於你做更多有趣的事。你可以自己去獲取、清洗、轉化或者分析你的資料。不過我也不會一上來就扔出大堆的程式設計知識,我建議還是從簡單的命令列操作開始學起,而本書正是介紹如何只用命令列就幫你完成些資料科學的任務。

Python for Data Analysis — McKinney: Python算是近幾年來非常流行的資料分析的語言了吧,人生苦短,請用Python。這本書算是個大部頭了,有400多頁吧,不過它首先為你介紹了Python的基礎語法,因此學起來不會很困難吧。

I heart logs — Jay Kreps: 最後一本書則是短小精悍,加起來才60多頁吧。不過它對於資料收集和處理的技術背景有很好的概述,雖然很多分析家或者資料科學家並不會直接用到這些知識,但是至少你能夠理解技術人員們可以用哪些架構去解決資料問題。

相關文章

人工智慧 最新文章