微信跳一跳python程式碼實現

NO IMAGE
1 Star2 Stars3 Stars4 Stars5 Stars 給文章打分!
Loading...

本文例項為大家分享了python微信跳一跳的具體程式碼,供大家參考,具體內容如下

部分程式碼分享:

wechat_jump.py


from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import math
import time
import os
import cv2
import datetime
scale = 0.25
template = cv2.imread('character.png')
template = cv2.resize(template, (0, 0), fx=scale, fy=scale)
template_size = template.shape[:2]
def search(img):
result = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
cv2.rectangle(img, (min_loc[0], min_loc[1]), (min_loc[0]   template_size[1], min_loc[1]   template_size[0]), (255, 0, 0), 4)
return img, min_loc[0]   template_size[1] / 2, min_loc[1]   template_size[0]
def pull_screenshot():
filename = datetime.datetime.now().strftime("%H%M%S")   '.png'
os.system('mv autojump.png {}'.format(filename))
os.system('adb shell screencap -p /sdcard/autojump.png')
os.system('adb pull /sdcard/autojump.png .')
def jump(distance):
press_time = distance * 1.35
press_time = int(press_time)
cmd = 'adb shell input swipe 320 410 320 410 '   str(press_time)
print(cmd)
os.system(cmd)
def update_data():
global src_x, src_y
img = cv2.imread('autojump.png')
img = cv2.resize(img, (0, 0), fx=scale, fy=scale)
img, src_x, src_y = search(img)
return img
fig = plt.figure()
index = 0
# pull_screenshot()
img = update_data()
update = True 
im = plt.imshow(img, animated=True)
def updatefig(*args):
global update
if update:
time.sleep(1)
pull_screenshot()
im.set_array(update_data())
update = False
return im,
def onClick(event): 
global update 
global src_x, src_y
dst_x, dst_y = event.xdata, event.ydata
distance = (dst_x - src_x)**2   (dst_y - src_y)**2 
distance = (distance ** 0.5) / scale
print('distance = ', distance)
jump(distance)
update = True
fig.canvas.mpl_connect('button_press_event', onClick)
ani = animation.FuncAnimation(fig, updatefig, interval=5, blit=True)
plt.show()

wechat_jump_auto.py


# coding: utf-8
import os
import sys
import subprocess
import shutil
import time
import math
from PIL import Image, ImageDraw
import random
import json
import re
# === 思路 ===
# 核心:每次落穩之後截圖,根據截圖算出棋子的座標和下一個塊頂面的中點座標,
# 根據兩個點的距離乘以一個時間係數獲得長按的時間
# 識別棋子:靠棋子的顏色來識別位置,通過截圖發現最下面一行大概是一條直線,就從上往下一行一行遍歷,
# 比較顏色(顏色用了一個區間來比較)找到最下面的那一行的所有點,然後求箇中點,
# 求好之後再讓 Y 軸座標減小棋子底盤的一半高度從而得到中心點的座標
# 識別棋盤:靠底色和方塊的色差來做,從分數之下的位置開始,一行一行掃描,由於圓形的塊最頂上是一條線,
# 方形的上面大概是一個點,所以就用類似識別棋子的做法多識別了幾個點求中點,
# 這時候得到了塊中點的 X 軸座標,這時候假設現在棋子在當前塊的中心,
# 根據一個通過截圖獲取的固定的角度來推出中點的 Y 座標
# 最後:根據兩點的座標算距離乘以係數來獲取長按時間(似乎可以直接用 X 軸距離)
# TODO: 解決定位偏移的問題
# TODO: 看看兩個塊中心到中軸距離是否相同,如果是的話靠這個來判斷一下當前超前還是落後,便於矯正
# TODO: 一些固定值根據截圖的具體大小計算
# TODO: 直接用 X 軸距離簡化邏輯
def open_accordant_config():
screen_size = _get_screen_size()
config_file = "{path}/config/{screen_size}/config.json".format(
path=sys.path[0],
screen_size=screen_size
)
if os.path.exists(config_file):
with open(config_file, 'r') as f:
print("Load config file from {}".format(config_file))
return json.load(f)
else:
with open('{}/config/default.json'.format(sys.path[0]), 'r') as f:
print("Load default config")
return json.load(f)
def _get_screen_size():
size_str = os.popen('adb shell wm size').read()
if not size_str:
print('請安裝ADB及驅動並配置環境變數')
sys.exit()
m = re.search('(\d )x(\d )', size_str)
if m:
width = m.group(1)
height = m.group(2)
return "{height}x{width}".format(height=height, width=width)
config = open_accordant_config()
# Magic Number,不設定可能無法正常執行,請根據具體截圖從上到下按需設定
under_game_score_y = config['under_game_score_y']
press_coefficient = config['press_coefficient'] # 長按的時間係數,請自己根據實際情況調節
piece_base_height_1_2 = config['piece_base_height_1_2'] # 二分之一的棋子底座高度,可能要調節
piece_body_width = config['piece_body_width'] # 棋子的寬度,比截圖中量到的稍微大一點比較安全,可能要調節
# 模擬按壓的起始點座標,需要自動重複遊戲請設定成“再來一局”的座標
if config.get('swipe'):
swipe = config['swipe']
else:
swipe = {}
#設定模擬按壓各項引數,經過多臺手機測試,其中2160x1080建議調整引數為320,1210,720,910
#使用vivox20,夏普全面屏和小米mix2測試過,均可達到2000 分數(記得在開發者設定開啟usb安全驗證)
swipe['x1'], swipe['y1'], swipe['x2'], swipe['y2'] = 320, 410, 320, 410
screenshot_way = 2
screenshot_backup_dir = 'screenshot_backups/'
if not os.path.isdir(screenshot_backup_dir):
os.mkdir(screenshot_backup_dir)
def pull_screenshot():
global screenshot_way
# 新的方法請根據效率及適用性由高到低排序
if screenshot_way == 2 or screenshot_way == 1:
process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
screenshot = process.stdout.read()
if screenshot_way == 2:
binary_screenshot = screenshot.replace(b'\r\n', b'\n')
else:
binary_screenshot = screenshot.replace(b'\r\r\n', b'\n')
f = open('autojump.png', 'wb')
f.write(binary_screenshot)
f.close()
elif screenshot_way == 0:
os.system('adb shell screencap -p /sdcard/autojump.png')
os.system('adb pull /sdcard/autojump.png .')
def backup_screenshot(ts):
# 為了方便失敗的時候 debug
if not os.path.isdir(screenshot_backup_dir):
os.mkdir(screenshot_backup_dir)
shutil.copy('autojump.png', '{}{}.png'.format(screenshot_backup_dir, ts))
def save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y):
draw = ImageDraw.Draw(im)
# 對debug圖片加上詳細的註釋
draw.line((piece_x, piece_y)   (board_x, board_y), fill=2, width=3)
draw.line((piece_x, 0, piece_x, im.size[1]), fill=(255, 0, 0))
draw.line((0, piece_y, im.size[0], piece_y), fill=(255, 0, 0))
draw.line((board_x, 0, board_x, im.size[1]), fill=(0, 0, 255))
draw.line((0, board_y, im.size[0], board_y), fill=(0, 0, 255))
draw.ellipse((piece_x - 10, piece_y - 10, piece_x   10, piece_y   10), fill=(255, 0, 0))
draw.ellipse((board_x - 10, board_y - 10, board_x   10, board_y   10), fill=(0, 0, 255))
del draw
im.save('{}{}_d.png'.format(screenshot_backup_dir, ts))
def set_button_position(im):
# 將swipe設定為 `再來一局` 按鈕的位置
global swipe_x1, swipe_y1, swipe_x2, swipe_y2
w, h = im.size
left = w / 2
top = int(1584 * (h / 1920.0))
swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
def jump(distance):
press_time = distance * press_coefficient
press_time = max(press_time, 200) # 設定 200 ms 是最小的按壓時間
press_time = int(press_time)
cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
x1=swipe_x1,
y1=swipe_y1,
x2=swipe_x2,
y2=swipe_y2,
duration=press_time
)
print(cmd)
os.system(cmd)
return press_time
def find_piece_and_board(im):
w, h = im.size
piece_x_sum = 0
piece_x_c = 0
piece_y_max = 0
board_x = 0
board_y = 0
scan_x_border = int(w / 8) # 掃描棋子時的左右邊界
scan_start_y = 0 # 掃描的起始y座標
im_pixel=im.load()
# 以50px步長,嘗試探測scan_start_y
for i in range(int(h / 3), int( h*2 /3 ), 50):
last_pixel = im_pixel[0,i]
for j in range(1, w):
pixel=im_pixel[j,i]
# 不是純色的線,則記錄scan_start_y的值,準備跳出迴圈
if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
scan_start_y = i - 50
break
if scan_start_y:
break
print('scan_start_y: ', scan_start_y)
# 從scan_start_y開始往下掃描,棋子應位於螢幕上半部分,這裡暫定不超過2/3
for i in range(scan_start_y, int(h * 2 / 3)):
for j in range(scan_x_border, w - scan_x_border): # 橫座標方面也減少了一部分掃描開銷
pixel = im_pixel[j,i]
# 根據棋子的最低行的顏色判斷,找最後一行那些點的平均值,這個顏色這樣應該 OK,暫時不提出來
if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
piece_x_sum  = j
piece_x_c  = 1
piece_y_max = max(i, piece_y_max)
if not all((piece_x_sum, piece_x_c)):
return 0, 0, 0, 0
piece_x = int(piece_x_sum / piece_x_c);
piece_y = piece_y_max - piece_base_height_1_2 # 上移棋子底盤高度的一半
#限制棋盤掃描的橫座標,避免音符bug
if piece_x < w/2:
board_x_start = piece_x
board_x_end = w
else:
board_x_start = 0
board_x_end = piece_x
for i in range(int(h / 3), int(h * 2 / 3)):
last_pixel = im_pixel[0, i]
if board_x or board_y:
break
board_x_sum = 0
board_x_c = 0
for j in range(int(board_x_start), int(board_x_end)):
pixel = im_pixel[j,i]
# 修掉腦袋比下一個小格子還高的情況的 bug
if abs(j - piece_x) < piece_body_width:
continue
# 修掉圓頂的時候一條線導致的小 bug,這個顏色判斷應該 OK,暫時不提出來
if abs(pixel[0] - last_pixel[0])   abs(pixel[1] - last_pixel[1])   abs(pixel[2] - last_pixel[2]) > 10:
board_x_sum  = j
board_x_c  = 1
if board_x_sum:
board_x = board_x_sum / board_x_c
last_pixel=im_pixel[board_x,i]
#從上頂點往下 274的位置開始向上找顏色與上頂點一樣的點,為下頂點
#該方法對所有純色平面和部分非純色平面有效,對高爾夫草坪面、木紋桌面、藥瓶和非菱形的碟機(好像是)會判斷錯誤
for k in range(i 274, i, -1): #274取開局時最大的方塊的上下頂點距離
pixel = im_pixel[board_x,k]
if abs(pixel[0] - last_pixel[0])   abs(pixel[1] - last_pixel[1])   abs(pixel[2] - last_pixel[2]) < 10:
break
board_y = int((i k) / 2)
#如果上一跳命中中間,則下個目標中心會出現r245 g245 b245的點,利用這個屬性彌補上一段程式碼可能存在的判斷錯誤
#若上一跳由於某種原因沒有跳到正中間,而下一跳恰好有無法正確識別花紋,則有可能遊戲失敗,由於花紋面積通常比較大,失敗概率較低
for l in range(i, i 200):
pixel = im_pixel[board_x,l]
if abs(pixel[0] - 245)   abs(pixel[1] - 245)   abs(pixel[2] - 245) == 0:
board_y = l 10
break
if not all((board_x, board_y)):
return 0, 0, 0, 0
return piece_x, piece_y, board_x, board_y
def dump_device_info():
size_str = os.popen('adb shell wm size').read()
device_str = os.popen('adb shell getprop ro.product.model').read()
density_str = os.popen('adb shell wm density').read()
print("如果你的指令碼無法工作,上報issue時請copy如下資訊:\n**********\
\nScreen: {size}\nDensity: {dpi}\nDeviceType: {type}\nOS: {os}\nPython: {python}\n**********".format(
size=size_str.strip(),
type=device_str.strip(),
dpi=density_str.strip(),
os=sys.platform,
python=sys.version
))
def check_screenshot():
global screenshot_way
if os.path.isfile('autojump.png'):
os.remove('autojump.png')
if (screenshot_way < 0):
print('暫不支援當前裝置')
sys.exit()
pull_screenshot()
try:
Image.open('./autojump.png').load()
print('採用方式{}獲取截圖'.format(screenshot_way))
except:
screenshot_way -= 1
check_screenshot()
def main():
dump_device_info()
check_screenshot()
while True:
pull_screenshot()
im = Image.open('./autojump.png')
# 獲取棋子和 board 的位置
piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
ts = int(time.time())
print(ts, piece_x, piece_y, board_x, board_y)
set_button_position(im)
jump(math.sqrt((board_x - piece_x) ** 2   (board_y - piece_y) ** 2))
save_debug_creenshot(ts, im, piece_x, piece_y, board_x, board_y)
backup_screenshot(ts)
time.sleep(1) # 為了保證截圖的時候應落穩了,多延遲一會兒
if __name__ == '__main__':
main()

程式碼較多,直接為大家分享原始碼下載連結,很詳細:python微信跳一跳

更多內容大家可以參考專題《微信跳一跳》進行學習。

相關文章學習推薦:

跳一跳小遊戲python指令碼

python基於TensorFlow實現微信跳一跳的AI

相關文章

程式語言 最新文章