ACL 2018 Accepted Papers About Dialogue Systems

NO IMAGE

ACL 2018 About Dialogue Systems

Task-Oriented

Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures. Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, Dawei Yin.

Abstract: Existing solutions to task-oriented dialogue systems follow pipeline designs which introduces architectural complexity and fragility. We propose a novel, holistic, extendable framework based on a single sequence-to-sequence (seq2seq) model which can be optimized with supervised or reinforcement learning. A key contribution is that we design text spans named belief spans to track dialogue believes, allowing task-oriented dialogue systems to be modeled in a seq2seq way. Based on this, we propose a simplistic Two Stage CopyNet instantiation which emonstrates good scalability: significantly reducing model complexity in terms of number of parameters and training time by a magnitude. It significantly outperforms state-of-the-art pipeline-based methods on large datasets and retains a satisfactory entity match rate on out-of-vocabulary (OOV) cases where pipeline-designed competitors totally fail.

Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems. Andrea Madotto, Chien-Sheng Wu, Pascale Fung.

Abstract: End-to-end task-oriented dialog systems usually suffer from the challenge of incorporating knowledge bases. In this paper, we propose a novel yet simple end-to-end differentiable model called memory-to-sequence (Mem2Seq) to address this issue. Mem2Seq is the first neural generative model that combines the multi-hop attention over memories with the idea of pointer network. We empirically show how Mem2Seq controls each generation step, and how its multi-hop attention mechanism helps in learning correlations between memories. In addition, our model is quite general without complicated task-specific designs. As a result, we show that Mem2Seq can be trained faster and attain the state-of-the-art performance on three different task-oriented dialog datasets.

Task-oriented Dialogue System for Automatic Diagnosis. Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao Tou, Ting Chen, Xuanjing Huang, Kam-Fai Wong, Xiangying Dai.

Abstract: In this paper, we make a move to build a dialogue system for automatic diagnosis. We first build a dataset collected from an online medical forum by extracting symptoms from both patients’ self-reports and conversational data between patients and doctors. Then we propose a task-oriented dialogue system framework to make diagnosis for patients automatically, which can converse with patients to collect additional symptoms beyond their self-reports. Experimental results on our dataset show that additional symptoms extracted from conversation can greatly improve the accuracy for disease identification and our dialogue system is able to collect these symptoms automatically and make a better diagnosis.

An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking. Puyang Xu, Qi Hu.

Abstract: We highlight a practical yet rarely discussed problem in dialogue state tracking (DST), namely handling unknown slot values. Previous approaches generally assume predefined candidate lists and thus are not designed to output unknown values, especially when the spoken language understanding (SLU) module is absent as in many end-to-end (E2E) systems. We describe in this paper an E2E architecture based on the pointer network (PtrNet) that can effectively extract unknown slot values while still obtains state-of-the-art accuracy on the standard DSTC2 benchmark. We also provide extensive empirical evidence to show that tracking unknown values can be challenging and our approach can bring significant improvement with the help of an effective feature dropout technique.

Global-Locally Self-Attentive Encoder for Dialogue State Tracking. Victor Zhong, Caiming Xiong, Richard Socher.

Abstract: Dialogue state tracking, which estimates user goals and requests given the dialogue context, is an essential part of task-oriented dialogue systems. In this paper, we propose the Global-Locally Self-Attentive Dialogue State Tracker (GLAD), which learns representations of the user utterance and previous system actions with global-local modules. Our model uses global modules to shares parameters between estimators for different types (called slots) of dialogue states, and uses local modules to learn slot-specific features. We show that this significantly improves tracking of rare states. GLAD obtains 88.3% joint goal accuracy and 96.4% request accuracy on the WoZ state tracking task, outperforming prior work by 3.9% and 4.8%. On the DSTC2 task, our model obtains 74.7% joint goal accuracy and 97.3% request accuracy, outperforming prior work by 1.3% and 0.8%.

Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning. Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam-Fai Wong.

Abstract: Training a task-completion dialogue agent via reinforcement learning (RL) is costly because it requires many interactions with real users. One common alternative is to use a user simulator. However, a user simulator usually lacks the language complexity of human interlocutors and the biases in its design may tend to degrade the agent. To address these issues, we present Deep Dyna-Q, which to our knowledge is the first deep RL framework that integrates planning for task-completion dialogue policy learning. We incorporate into the dialogue agent a model of the environment, referred to as the world model, to mimic real user response and generate simulated experience. During dialogue policy learning, the world model is constantly updated with real user experience to approach real user behavior, and in turn, the dialogue agent is optimized using both real experience and simulated experience. The effectiveness of our approach is demonstrated on a movie-ticket booking task in both simulated and human-in-the-loop settings.

Non-Task-Oriented (Chit-Chat)

Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots. Yu Wu, wei wu, Zhoujun Li, Ming Zhou.

Abstract: We propose a method that can leverage unlabeled data to learn a matching model for response selection in retrieval-based chatbots. The method employs a sequence-to-sequence architecture (Seq2Seq) model as a weak annotator to judge the matching degree of unlabeled pairs, and then performs learning with both the weak signals and the unlabeled data. Experimental results on two public data sets indicate that matching models get significant improvements when they are learned with the proposed method.

Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network. Xiangyang Zhou, Lu Li, Daxiang Dong, Yi Liu, Ying Chen, Wayne Xin Zhao, Dianhai Yu, Hua Wu.

Abstract: Human generates responses relying on semantic and functional dependencies, including coreference relation, among dialogue elements and their context. In this paper, we investigate matching a response with its multi-turn context using dependency information based entirely on attention. Our solution is inspired by the recently proposed Transformer in machine translation (Vaswani et al., 2017) and we extend the attention mechanism in two ways. First, we construct representations of text segments at different granularities solely with stacked self-attention. Second, we try to extract the truly matched segment pairs with attention across the context and response. We jointly introduce those two kinds of attention in one uniform neural network. Experiments on two large-scale multi-turn response selection tasks show that our proposed model significantly outperforms the state-of-the-art models.

Knowledge Diffusion for Neural Dialogue Generation. Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, Dawei Yin

Abstract: End-to-end neural dialogue generation has shown promising results recently, but it does not employ knowledge to guide the generation and hence tends to generate short, general, and meaningless responses. In this paper, we propose a neural knowledge diffusion (NKD) model to introduce knowledge into dialogue generation. This method can not only match the relevant facts for the input utterance but diffuse them to similar entities. With the help of facts matching and entity diffusion, the neural dialogue generation is augmented with the ability of convergent and divergent thinking over the knowledge base. Our empirical study on a real-world dataset prove that our model is capable of generating meaningful, diverse and natural responses for both factoid-questions and knowledge grounded chi-chats. The experiment results also show that our model outperforms competitive baseline models significantly.

Personalizing Dialogue Agents: I have a dog, do you have pets too?. Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, Jason Weston.

Abstract: Chit-chat models are known to have several problems: they lack specificity, do not display a consistent personality and are often not very captivating. In this work we present the task of making chit-chat more engaging by conditioning on profile information. We collect data and train models to (i)condition on their given profile information; and (ii) information about the person they are talking to, resulting in improved dialogues, as measured by next utterance prediction. Since (ii) is initially unknown our model is trained to engage its partner with personal topics, and we show the resulting dialogue can be used to predict profile information about the interlocutors.

Build Tools

DeepPavlov: Open-Source Library for Dialogue Systems. Mikhail Burtsev, Alexander Seliverstov, Rafael Airapetyan, Mikhail Arkhipov, Dilyara Baymurzina, Nickolay Bushkov, Olga Gureenkova, Taras Khakhulin, Yuri Kuratov, Denis Kuznetsov, Alexey Litinsky, Varvara Logacheva, Alexey Lymar, Valentin Malykh, Maxim Petrov, Vadim Polulyakh, Leonid Pugachev, Alexey Sorokin, Maria Vikhreva, Marat Zaynutdinov.

Abstract: Adoption of messaging communication and voice assistants has grown rapidly in the last years. This creates a demand for tools that speed up prototyping of feature-rich dialogue systems. An open-source library DeepPavlov is tailored for development of conversational agents. The library prioritises efficiency, modularity, and extensibility with the goal to make it easier to develop dialogue systems from scratch and with limited data available. It supports modular as well as end-to-end approaches to implementation of conversational agents. Conversational agent consists of skills and every skill can be decomposed into components. Components are usually models which solve typical NLP tasks such as intent classification, named entity recognition or pre-trained word vectors. Sequence-to-sequence chit-chat skill, question answering skill or task-oriented skill can be assembled from components provided in the library.