HDU 2181 哈密頓繞行世界問題(經典DFS 回溯)

NO IMAGE

哈密頓繞行世界問題

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3105    Accepted Submission(s): 1918


Problem Description
一個規則的實心十二面體,它的 20個頂點標出世界著名的20個城市,你從一個城市出發經過每個城市剛好一次後回到出發的城市。 
 


Input
前20行的第i行有3個數,表示與第i個城市相鄰的3個城市.第20行以後每行有1個數m,m<=20,m>=1.m=0退出.
 


Output
輸出從第m個城市出發經過每個城市1次又回到m的所有路線,如有多條路線,按字典序輸出,每行1條路線.每行首先輸出是第幾條路線.然後個一個: 後列出經過的城市.參看Sample output
 


Sample Input
2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0
 


Sample Output
1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
 


Author
Zhousc
 


Source
 

題目連結:HDU 2181

感覺是非常經典的DFS回溯題,題目中要求按字典序排序,那每一次選的可行點肯定是要最小的,用邊儲存不好,還是用點儲存比較好,還有題目中雖然說是無向圖,但是實際建圖還是只需要單向邊即可,因為題意是沿著一個方向剛好都旅行到一次,雙向邊會大大增加搜尋時間導致無法輸出…………

程式碼:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define MM(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1) 1)
#define MID(x,y) ((x y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=65;
vector<int>E[N];
int vis[N],cnt,m;
int nxt[N];
void init()
{
for (int i=0; i<N;   i)
E[i].clear();
MM(vis,0);
cnt=0;
MM(nxt,-1);
}
void dfs(int s,int fa,int lay)
{
int i,j;
for (i=0; i<3;   i)
{
int v=E[s][i];
if(vis[v]==0)
{
vis[v]=1;
nxt[s]=v;
dfs(v,s,lay 1);
nxt[v]=-1;
vis[v]=0;
}
else if(vis[v]==1&&v==m&&lay>=19)
{			
printf("%d:  ",  cnt);
int flag=0;
nxt[s]=m;
for (j=m; j!=-1; j=nxt[j])
{
flag =(j==m);								
printf("%d",j);	
if(flag!=2)
putchar(' ');
else
{
putchar('\n');
break;
}	
}
return ;
}
}
}
int main(void)
{
int i,j,a,b,c;
init();
for (i=1; i<=20;   i)
{
scanf("%d%d%d",&a,&b,&c);
E[i].push_back(a);
E[i].push_back(b);
E[i].push_back(c);
}
for (i=0; i<N;   i)
{
if(!E[i].empty())
sort(E[i].begin(),E[i].end());
}
while (~scanf("%d",&m)&&m)
{
vis[m]=1;
dfs(m,-1,0);
vis[m]=0;
cnt=0;
}
return 0;
}